
Visual Programming

Matthew van Cittert

25 March 2009

1

1 Introduction
The study of visual programming was once an active field of study, but journal
articles on the topic post 1990’s are rare. Yet the idea of visual programming is
no less valid. Graphical diagrams and modelling tools continue to be used to aid
programming. Integrated development environments (IDEs) rely increasingly
on non-textual graphics to improve the task of programming. Some tools, such
as Netbeans, Blender and XMLSpy, go further to supply diagrammatic views
of code. Without the limit of insufficient hardware, and with an increase in
tools and libraries for the design of graphical user interfaces, a gradual shift has
been made towards graphically oriented programming. This project proposes
to investigate, devise and evaluate representations of programming, primarily
graphical. This inlvolves investigation of the field of graphical programming
and the theory behind the relation of text, graphics and human perception.

Visual programming has been primarily adopted in the audio and electronic
fields, but not in the realm of general programming. Articles on visual program-
ming have neglected study on why graphics are effective and what role graphics
may play in the improvement of programming. To research abstractions for
programming, it will first be necessary to establish a good understanding of the
concept of text, and to investigate and establish the strengths and weaknesses
of text and various graphical representations, such as diagrams, flowcharts and
graphs. Part of this understanding may be available in the literature, the rest
will need to be explored through tests and analysis. Abstractions may then be
designed from this basis. These abstractions will be combined into demonstra-
tional graphical programming systems. Finally these systems will be evaluated,
to analyse whether the abstractions benefit programming. Analysis will focus
on whether the use graphics would be feasible in programming systems, and
defining the respective roles of text and graphics in programming.

2 Research problem

2.1 Research question
Current methods of mainstream programming rely largely on text, with few
abstractions to facilitate the process and with little support from graphics. Our
research question is:

We aim to devise graphical and textual abstractions to facilitate the
process of programming to improve the reliability, accuracy and de-
sign of programs and reduce the time and effort required to produce,
alter, correct and understand code.

2.2 Clarification
To avoid ambiguity and misinterpretation, the research question requires con-
crete definitions of the concepts outlined. These are given below. Note that

2

the terms are interrelated and partially overlapping. For example, to alter a
program requires a good understanding of the code.

Reliability Frequency and severity of syntactic and semantic errors (bugs).

Accuracy Producing output that is as close as possible to that which the
programmer intended.

Design Reducing code to reusable, simple to understand and logically
grouped components which interact in clearly defined ways.

Production Generation of code that achieves the aim for which it was
intended.

Alteration Change or extension of code to meet new specifications or
expectations. This includes updating the rest of the system to be compatible
with the change.

Examples

• Commenting out a variable and all further references to it.

• Changing a data structure from a queue to a stack and adjusting the
system to become compatible with the change.

• Incorporating and reusing code in other projects with not completely com-
patible requirements.

• Updating, migrating or extending programs to serve new goals or run in
different environments.

Correction

• Syntax: Find code that does not satisfy the constraints of the compiler,
understand why it is not acceptable and rewrite the code so that it is
acceptable to the compiler.

• Semantics: Find code that produces unintended results, understand why
the code does not produce the expected results and rewrite the code such
that it does what is expected of it.

Understanding Comprehension of what a program or segment of code
does, how it goes about this and what the results, siginificance and consequences
of the piece of code are.

3

2.2.1 Issues with current methods of programming

Control

• The style in which programs are written is entirely up to the programmer
and may be difficult to understand and to follow.

• It is difficult, if not impossible, to place restrictions and exercise control
over coding. It is entirely up to the programmer which features of a
language to use, when and how.

Relevance to project

• Use of graphical or textual abstractions may be investigated to restrict
construction of programs to easily readable layouts. This requires study
into what constitutes an easily read layout. Some issues of readability such
as lack of comments, abbreviated, uninformative or misleading variable
names would be difficult or impossible to resolve. These issues require
knowledge of the code and the logic behind it, which is available only to
the programmer.

• Providing an interface between the user and code may provide a means to
control the code produced.

Comments

• This is not a major issue as there are a number of formatters, or pretty
printers, available to resolve poor coding style. Conversely, the difficulty
of implementing automatic formatters in graphical programming systems
is later raised as a difficulty in graphical abstraction.

Understanding

• Well written programs may be difficult (require a lot of time and effort)
to understand. It is often difficult to determine from code what a pro-
gram does without external documentation, which may not be supplied,
as generation of documentation is often time consuming and tedious.

Relevance to project

• Graphical and textual abstractions may be used to improve navigation
through code, abstract code to hierachies of constituent components and
find representations that avoid excessive bloating of code from comments.
Representations of code and documentation may be merged to avoid the
need to use external documentation generators and modelling tools to
hand craft external documentation.

4

Abstraction

• Few means are available to hide code not currently under study, such as
code folding or placing the code in separate files.

• Different programming languages may use different words to express the
same instructions.

Relevance to project

• Layers of abstraction may be used to show or hide details.

• Use of different views or representations may help focus and emphasise
relevant points and features, while hiding others.

• Abstractions, especially graphical, may help to abstract and merge com-
mon features found in different programming languages.

Comments

• The adaptation of the Unified Modelling Language (UML) for use as a
programming languages is suggested by [2].

Navigation

• It is difficult to navigate through code, requiring powerful IDE’s, multiple
files and search facilities.

Relevance to project

• Use of abstractions may aid navigation.

• The interface between user and code may be provided with search and
navigation facilities.

2.2.2 Definitions and clarification of terms used

Easily readable An easily readable layout should require minimal effort to
understand, follow and navigate. There should be defined starting and end
points, and as few of these as possible. There should be defined and navigable
paths through the content from start points to end points.

Well written

Function

• The program does what the programmer intended, in the simplest and
most straight-forward way possible to achieve the efficiency required of
the program.

5

Complexity

• Complex portions of code should be broken into simple components and
combined so as to be easy to follow and understand.

Understanding

• Comments should be supplied where, and in such a way that, they improve
understanding of the code. The layout should be easily readable and easy
to follow, simple (complex algorithms broken into simple components,
combined in easy to follow manner). Abbreviation should be avoided
where abbreviated names take effort to resolve, but names should be as
short as is feasible to avoid effort taken to read, remember and process
them. But names should be memorable and suggest their purpose to foster
understanding.

Simple Simple code is of a length and complexity that its entirety could be
understood thoroughly and completely with little time and effort (where ’little’
is a subjective term), pre-supposing that the components of the code are already
understood in the same manner.

2.3 Outcomes of Project Research question
"We wish to devise and evaluate abstract representations of existing
textual programming languages to improve the reliability, accuracy
and design of programs, and to reduce the time and effort required
to produce, correct, extend and understand them."

In view of the above topics and the research question, the goals of the project
are to provide abstractions that achieve part or all of the following:

Understanding Represent code in forms that reduce the effort and time
required to understand and interpret it, with less reliance on external documen-
tation.

Aim Increased understanding of the code should result in improved pro-
gram reliability and accuracy, and better understanding of the overall program.
Better representation of the code may improve understanding of the problem,
which may lead to improved program design. Reducing time and effort required
to understand code would reduce the time and effort required to correct, extend
or reuse the code.

Navigation Provide representations that allow readers to expend less time
and effort, and result in less confusion in navigation of code.

6

Aim Better navigation of code should decrease the time and frustration
involved in producing, extending and correcting programs. Representations em-
phasising logical code navigation may encourage better overall program struc-
ture and design, due to the benefit to navigation provided by logically grouping
modular code.

Abstraction Provide means to reduce distractions while studying code.
Enable the reader to focus on one aspect of a program and ignore the rest of
code. Abstract specifics of language implementation.

Aim Removing distractions and encouraging focus on the code under study
may reduce the concentration required to understand code. Abstracting com-
mon features of programming languages reduce the time and effort required
when programming in different languages. Understanding by programmers
whose native language is different to that used by a programming language
may be improved. Producing programs in different languages should be easier
and to an extent automated, as the programmer would not have to deal with the
quirks of each language and the same abstraction could be applied to multiple
languages.

Control Enforce a more readable style. Control which features of a lan-
guage may be used, when and how.

Aim By improving the layout and presentation of code, the time and
effort required to understand the code should be reduced. Otherwise obscure
connotations and implications of the code should become clear. This should
improve correction, alteration and extension of code. This may result in better
program reliability. Readable code should be easier to navigate and should be
easier to remember. Control of program features could be used to encourage
good programming practice. This should result in more reliable code that is
easier to follow, and to alter and extend.

3 Background

3.1 Introduction
Visual programming was once an active field of study. Despite this, many
aspects of the theoretical basis of visual programming were neglected or un-
derstudied. A firm basis and understanding of the roles of text and graphics
are needed before considering their appropriate uses in programming. Motiva-
tion for this study is warranted by the continued use of modelling tools for the
creation of documentation, and the increasing reliance by IDEs upon graphical
representations and decoration. With modern hardware and the availability of
powerful software tools, visual programming no longer faces the limitations it
did upon its inception, and may prove a valuable avenue of continued study.

7

3.2 Relevent concepts
3.2.1 Abstraction

Humans have a limited capacity to think. The overall number and complexity
of ideas or concepts we can think simultaneously is limited. Abstraction allows
a programmer to focus exclusively on relevant details of a piece of code, and
ignore its inner workings. Functions may be used with no knowledge of how they
achieve their task. Different graphical and textual representations, or views,
of code will be investigated. This will aim to emphasise and give clarity to
relevent features of code, and hide irrelevent features. There are many existing
representations which may be drawn upon, such as graphs, diagrams, flowcharts.

3.2.2 Dimension

Within the scope of this project, dimension will be considered as a channel of
information. Dimensions come in many forms. Some are visual, some audio,
some tactile. This project will primarily consider visual dimensions, but audio
may serve as an effective secondary channel of communication.

Visual dimensions include spatial dimensions, such as width, height and
depth. Positional dimensions may take the form of coordinates. Colour may be
divided into dimensions, such as shade, hue, red, green and blue. Audio includes
dimensions such as pitch, volume or tone of voice. Tactile dimensions include
texture and temperature.

Dimensions may be mapped to information. Scale of an object or position
of a slider may be mapped to value. Colour and shape may be mapped to type.
Position may be mapped to association, and order mapped to priority. This
project will look at effective mapping of representation to information.

There are a number of considerations to take into account when evaluating
whether dimensions are suitable as representations. The means to represent the
dimension should be available. For example, touch and smell are not physically
supported by computers. Despite this, a smell could be mapped to a description,
such as lime or orange-blossom, or to a colour such as green or orange.

The dimension should have the necessary range to represent the number of
values required of it. This range must be available at a granularity such that the
values are adequately distinct. For example, the shades black and white could
be used to accurately represent the boolean values true and false. The granu-
larity could be reduced to allow 256 grayscale shades and so represent eight bit
integers. But the shades would not be adequately distinct to accurately distin-
guish between shades. While this may be suitable for a rapid approximation,
such as of a characters health level in a game, this representation would not be
suitable for accurate arithmetic.

3.3 Project components
The project undertaking can be divided into three interrelated concepts:

8

3.3.1 Encoding

Text is an encoding. In its visual form, text is a way to read and write pic-
tures. It has a defined set of graphics (letters) combined according to a defined
set of rules to form words. Words are in turn combined, with more characters
(punctuation) to form sentences. We are taught to read and write text. Text
is a general purpose encoding, and has successfully been applied to program-
ming, by deriving new rules and restrictions to create programming languages.
Graphical programming could be viewed as tailoring a specialised form of read-
ing and writing, namely reading and writing instructions to a computer. An
important part of the project is to clearly define how graphics should be read
and written. A complaint made by [5] is that graphics are considered a pow-
erful form of communication due to the interpretation they facilitate, but that
interpretation is not beneficial to a field requiring a precise and unambiguous
notation. Rules are needed to govern how graphics should be arranged, what
different configurations of graphics mean and how to interpret graphs, pictures
and diagrams. This is essential to the successful inclusion of interpretation in a
highly mathematical field. But provided the cost in time and effort required to
learn the new encoding should not be prohibitively higher than its benefits, and
the new encoding must be better suited to programming than those already in
existence.

3.3.2 Interface

Producing graphical and textual abstractions implies adding a new layer be-
tween the user and the computer. This interface has roles of its own. An extra
layer may simplify the process of programming by giving greater control over
coding, automating code generation and abstracting details. But it may add
costs. The translation of changes between layers is a minor performance cost on
modern day hardware, but major programming undertaking, requiring diligence
and often resulting in inconsistencies and other bugs. Without optimisation, ab-
straction of details causes the production of general purpose code. This code is
not tailored to the task at hand and may be much less efficient than handcoded
instructions.

3.3.3 Presentation

This refers to presenting code in a logical form. The closer the mapping from the
problem to the solution, the easier the code will be to produce and understand
[1]. This portion of the project consists of defining a basis of understanding of
dimension, arrangement, association and interpretation, and looking at the way
in which they may be used to improve the process of programming.

9

3.4 Text and graphics
3.4.1 Introduction

A distinction is commonly made between graphics and text (for example [4]). It
is necessary to establish the relation between graphics and text to understand
what is meant by graphical or textual programming.

3.4.2 Text and graphics

Text is a subset of graphics. It consists of a series of spatially two dimensional
pictures, or characters, encoded serially to form a one dimensional string. But
there is no term available to refer specifically to non-textual graphics. Where
graphics and text are contrasted in this paper, the term graphics should be
taken as means of representing information graphically other than by the use
of conventional text. This includes the use of characters for decoration rather
than function.

3.4.3 Graphical decoration of text

To make bare text easier to read, its graphical display is enriched or decorated.
Following are examples of the use of presentation, without change of the under-
lying textual meaning, to provide visual cues to aid readers.

Character case Upper and lowercase letters provide two graphical forms of
characters with the same interpretation. These may be used interchangeably
while preserving the meaning of the word in the natural language. Capitali-
sation was used in case insensitive programming languages, such as Pascal, to
emphasise, and so help the reader distinguish, keywords. Capitalisation is used
in case sensitive Java to distinguish class names from identifiers. Camel case
notation or underscores are used to help the reader distinguish separate words
in a string of characters.

Text size A number of other alterations may be made to the display of text
without altering the underlying meaning. An example is text size. Text size is
not often used to decorate programming languages, but is used in text editors.
Larger, more emphasised, text is considered more important and is commonly
used in headings.

Font Different fonts are used to denote different classes of text. In the case of
fonts, the characters have the same recognisable form but bear different styles
of decoration. In many textbooks, and in many articles pertaining to computer
science, different fonts are used to distinguish code samples from content.

10

Font Style Various font styles are employed in integrated development envi-
ronments (IDE’s) to distinguish parts of code. Styles such as bold, underlined,
italic and strikethrough are used to separate keywords, identifiers, types, com-
ments, directives and other parts of programming languages. These may also
be used to highlight matching selected braces (Figure 2).

Shapes and pictures Another graphical emphasis is the use of shapes and
pictures. In the Java Netbeans IDE (version 6.5), rectangles are drawn around
certain items of text to provide emphasis, depending on the context. In text
editors, a red wavy line underneath text often indicates a spelling mistake and
a green one represents a grammar mistake. In some IDEs, wavy lines have
been used to warn of syntax and semantic errors, such as unintialised or unused
variables. Graphics may accompany text, such as yellow light bulbs to indicate
suggestions, yellow triangles or red octogons containing exclamation marks to
indicate warnings or errors, and blue or green circles containing an ’i’ or a
question mark to indicate information or help (Figures 2 & 3).

Colour Colour is widely used to emphasise and distinguish parts of text. In
many IDES, such as Lazarus, Delphi, Netbeans, JCreator, CodeBlocks and Vi-
sualStudio, characters are given different colours to highlight keywords, symbols,
identifiers, comments and directives, and to show that a stretch of text has been
highlighted. The background colour of characters is used to highlight selected
text, the current line, other instances of the selected word, or the prescence of
a breakpoint. Colours may be used in the margin of a corresponding line to
indicate the state of the text. Green is used to indicate that the line has been
added this session and has been saved, orange or yellow to indicate that it has
not been saved (Figures 2 & 3).

Layout Text is most commonly represented in a spatially two dimensional
space, the screen. Special control characters, such as linefeed and carriage re-
turn, are interpreted as new lines. Lines and indentation is commonly referred
to as whitespace. Whitespace is used to achieve layouts of text that improve
readability. Conventions are devised and learnt to speed recognition and in-
terpretation of the meaning assigned to different layouts. Some programming
languages, such as Python, have incorporated layout into the language syntax.

Tables Columns and tables are structures that use the concept of layout.
Tables have rules to aid interpretation. The first row of a table commonly
comprises the table headings. These are commonly emphasised using styles
such as bold or underlining. The items and headings in the same row or column
are taken to be logically related (Figure 2).

Lists Bullets and points are structures used to aid layout and imply associa-
tion. These lists may be ordered (often numbered) or unordered. The position
of items in a list may have further implications. Items higher up in a list may be

11

regarded as having higher priority or importance. This rule may be overriden
in numbered lists. Items with a lower numbering are more important or have
higher precedence (Figure 2).

Floating windows Floating text boxes and windows give meta-information
about code and present options for auto-completion (Figure 2).

Summary This list is not exhaustive and there are many more applications of
graphical decoration of text. Some of these aid the reader without affecting the
underlying meaning, such as capitalisation in Pascal. Others allow the reader
to make inferences about the contents, such as the priorities and associations
in lists and tables. Others again determine the function, such as indentation in
Python and capitalisation in case sensitive languages, such as Java. This list
should emphasise the role of visual cues in aiding reading and interpretation of
textual programming languages.

3.4.4 Textual abstractions and representations

A number of textual abstractions have been used in programming environments.
Other abstractions have been used elsewhere, such as webpages and electronic
documents, but have not been used in programming. It may be of worth to in-
vestigate, evaluate and possibly incorporate some of these unused abstractions
into programming environments. It is also important to enumerate and evalu-
ate textual abstractions, to determine whether their graphical counterparts are
neccessary and superior, and to determine which graphical abstractions have no
feasible textual counterparts. The results of these investigations may be used
as a basis to justify or abandon the use of graphics in programming as a means
of abstraction.

Abstractions of text used in programming

• Code folding, such as used for code hiding in the Visual studio, Lazarus
and Netbeans IDEs.

• Code placed in separate files, used to organise data in operating systems.

• Hyperlinks, such as used for code navigation in the Netbeans, Delphi and
Lazarus IDEs.

• Bookmarks, such as used for code navigation in the Lazarus IDE.

• Scrolling, allowing a workspace larger than the screen, found in many
programs especially text editors.

• Functions, allowing lists of instructions to be abstracted to a single word,
found in many programming languages.

12

• Line by line debugging and stepping through code, to relate program code
and program execution.

• Graphical representation of code, such as in Blender, XML spy and Net-
beans (Figure 4).

Abstractions of text not used in programming

• Overviews in the form of content pages and indices as forms of navigation,
used in books and to navigate websites. Some IDEs, such as Netbeans,
Visual studio, Delphi and Lazarus, show summaries of classes, methods
and functions which could be viewed as use this abstraction.

• Tables or columns, as in spreadsheets and to format textual documents.
This may be useful to represent parallel execution or multiple options
side by side. This may include code for threads, if-then-else statements
(as in Nassi-Scheider diagrams), case or switch statements and if-defined
directives. But confusion may result if column divisions are not sufficiently
clear, requiring more time and effort to read. Statements often fill the
entire screen width. If columns are to offer an improvement to readability,
statements should fit side by side readably.

3.4.5 Strengths and weaknesses of text

Advantages Text is a mature, tried and tested method of encoding and de-
coding information. It is well studied and well supported.

• Text exists in different modes, including visual, audio and tactile. Exam-
ples of these include writing, speech, braille, and derived encodings such
as morse code. Communication of text is well supported.

• Programmers are already trained to read and write general text, as well
as notations defined by programming languages.

• A large vocabularly exists and has been learned. This allows a single word
to convey many complex concepts or descriptions. In these cases, words
are very compact.

• Many facilities exist to support text. These include hardware, such as
keyboards, and software, such as operating systems, text editors, special
string structures built into programming languages and libraries of string
handling functions.

• Mature, tested and well studied textual programming languages exist in
abundance. These have tailored encodings of general text to suit program-
ming.

• Graphical decorations of text have been devised, accepted and learned.
Conventions, such as layout, have been established. Many IDEs effectively
graphically augment text.

13

•

• Precise, mathematical etc. [5]

• Easier to recognise two words as distinct if lettering different (although
sometimes read only first and last letter).

• Variation

• Compact

• Description - how to search for a picture?

Disadvantages

• Despite good support of communication of text in other modes, means of
describing code informally is not always well defined. An example is the
vocal description of a for-loop, such as “for(int i = 0; i <= 10; i++)”,
which is not described literally as “for open bracket int i ...” but rather
“for i equals zero through ten” or “for i from zero to ten”. In the same way,
it is not unwarranted to expect that communication of encodings other
than text may be defined or evolve.

• Text is general. Although text is specialised and tailored in the form of
programming languages, text was not specifically designed to suit pro-
gramming. There may be encodings that surpass text in its suitability for
programming.

• Large and complex projects in textual programming languages rely heavily
on external IDEs, documentation and modelling tools. In the case of lay-
out, indentation may be part of the syntax, as in Python, or independant
of it, as in Java, C and Pascal. In the same line of argument, it should be
investigated whether representations to improve reading and writing code
should be part of or derived from the syntax.

• Text takes time to read. Road signs reduce concepts to single icons. This
supports the argument that words made up of multiple characters make it
more difficult to a basic idea of the contents at a glance. But this abstrac-
tion is used to some extent in the form of functions - single, preferably
descriptive, words representing lists of instructions. Applying the concept
of road signs to programming may help readers gain an overview of code
faster and with less effort than is currently required. But this relies on
the use of memorable signs, in such numbers that they do not exceed
the bounds of users’ recollection and sufficiently disitinct not exceed the
bounds of users’ perception.

• Words are tied to specific languages. Images may have interpretive value.
Road signs may be understood and easily recalled even if the reader does
not understand the same language as the author of the sign, although

14

intpretation may be tied to cultural groups. This facility may play a role in
the abstraction of specifics of languages’ syntax, allowing common features
to be abstracted to a common representation. But [5] raises the objection
that programming requires an unambiguous, mathematical notation. In
light of this argument, care should be taken to define the meaning of
images to avoid ambiguity, and not to rely too heavily on interpretation.

3.4.6 Strengths and weaknesses of graphics

Despite the large amount attention the field of visual programming has received
in the past, the use graphics may play in programming has not been given much
attention [5]. A goal of the project is to investigate and demonstrate such uses.

Possible or claimed advantages of graphics

• Allows interpretation [4]. But text is also open to interpretation, as is the
case with poetry. Interpretation allows the writer to invent new words
which inherently communicate their meaning, such as scientific names
composed of latin sub-words, or road signs. But the reliability of interpre-
tation depends on the understanding, experience and grasp of the reader,
and the reader’s familiarity with techniques used by writer. [5] argue that
interpretation is not be suitable in a precise, mathematical field such as
programming as it is a cause of ambiguity.

• Expressive [3]. Provides more information with less clutter in less space
[5]. This would depend on how the code is represented and is not inherent
to graphics. The same claim could be made for different textual repre-
sentations. The amount of clutter and irrelevant information presented
depends purely on the amount of abstraction applied. Representations
should aim for good use of space, not necessarily little use of space. [5]
point out that the expressive power made available by visual cues, such
as layout, are a side-effect and not part of the syntax. This leaves layout
unregulated. The poor layouts that may result, especially in the case of
inexperienced programmers, may cause confusion and reduce readability
rather than improve it.

• Rapid and simple interaction and editing[3]. This may be true, but de-
pends on the interface and is not inherent to graphics. Whether graphical
interfaces are superior to text or consoles is a matter of debate and pref-
erence.

• Easy to learn [3]. Easier to understand [5]. This depends on the presenta-
tion complexity, memorability and mapping to the problem domain, and
is not inherent to graphics.

• More efficient mental processing of graphics than text [4]. This is debat-
able. The representation is likely the most important factor in efficient
mental processing, although use of visual cues such as colour are used

15

in mind maps to make them easier to improve appeal and the ability to
understand and remember them.

• Gives an overview, showing structure more clearly [5]. This may be true,
but overview and structure are issues of abstraction, whether textual or
graphical. But textual and graphical overviews should be compared to
determine whether graphics could play a role in improving the quality of
code overviews.

• Closer mapping to the problem domain [5]. This may be true as graphics
is not faced with the restrictions of text. For example, blocks of informa-
tion could be presented overlapping one another, although this has already
been achieved with text boxes in IDEs such as Netbeans (Figure 2). But
this would depend on the means used to represent the problem. This ar-
gument is supported by the prevalence of mind-maps and code modelling
tools. The suitability of graphics and text need to be evaluated when
mapping different parts of problems, such as structure, associations, in-
teractions and relationships. The lack of textual restrictions may make it
easier to apply anologies and metaphors to graphics.

• More memorable [5]. This may be true for some cases, for some people
and with some pictures or words. The importance of memorable code and
the relative ability to remember words, pictures and dimensions such as
colour, should be investigated to determine the importance and role of
this claim.

• Greater appeal[5]. [5] emphasise this as an important feature of graphics.
It could be argued that a more appealing interface may lead to more
enjoyable programming, resulting in more focus and less fatigue - as less
effort is required to keep working than by an unwilling programmer. In
the example of mind maps, decoration that has no function other than
appeal is used to help unwilling students convince themselves to continue
studying. Another avenue of investigation is the role of presentation and
appeal in stimulating creativity. Included in establishing appeal are factors
such as use of complementary colours and use of shapes.

Possible or claimed disadvantages

• In instances where images are used as code, the amount of memory re-
quired may be much greater than in the case of text. But this may not
be the case where compressed or vector formats are used, nor should it be
as much of an issue as it was in the past due to major improvements in
hardware.

• The expressive freedom made available through the use of graphics may
be misused, resulting in confusing and unreadable code [5]. This is an
important point to keep in mind, but is only a problem if the syntax
allows such abuses.

16

• Graphics are more difficult to read[5]. This depends entirely on the rep-
resentation.

• Graphics are open to interpretation and so are not sufficiently precise and
are open to ambiguity[5]. The same could be said for text, and depends
entirely upon what contraints are built into the syntax.

3.4.7 Motivation, constraints, and research questions

If graphical representation has no place in programming then,

• Why are diagrams used?

• Why are mind maps and spider web diagrams used as study techniques?

• Why do modelling languages, such as UML, exist?

• Why is text graphically decorated?

If graphical representation is inherently superior to text [4] then,

• Why are diagrams not used exclusively?

• Why are there no general iconic programming languages or graphically
extended languages in widespread use?

Needed research:

• What makes a good diagram, and what makes a bad one?

• What does it mean for a diagram to be good or bad?

• Under what circumstances and in what way are graphics more effective
than text, or text more effective than graphics?

• What perceptions and conventions exists regarding representation?

• How may these perception and conventions be used or exploited to improve
programming?

• What are the limits the optima and limits of human perception, memory
and interpretation?

• What representations (diagrams, flow charts, graphs) exist, and what are
their strengths and weaknesses?

• Is it better to use symbols users recognise, or train users to recognise
symbols?

• What are the components of programming languages, and how are these
most effectively represented under different circumstances?

17

• Are summaries or overviews useful to programmers? If so, then are textual
or graphical representations more suitable as overviews? If so, then which
representations and in which cases?

• Are textual or graphical representations preferable to represent structures,
associations, interactions or relationships? If so, then which representa-
tions and in which cases?

3.5 Brief overview of available literature
3.5.1 Reviewed

General

• [1]: Evaluation of a programs facility. How closely the steps taken to code
the solution to a problem map to the steps taken to solve the problem.

• [2]: Suggest that UML (Unified Modelling Language) could be used as a
programming language, rather than just an external program modelling
notation. But this would require extension of UML to provide more detail
than it does at present.

• [5]: Graphics give the programmer more freedom of expression. A good un-
derstanding of the relation between the code and the problem is required
to produce a readable solution. Counter-intuitively, graphical program-
ming is not suited to beginner programmers, as poor code structure leads
to code that is very difficult to read. Well defined notation is required
to prevent ambiguity and misinterpretation of visual cues in graphical
programming.

Graphical programming systems

• [4]: Presents Pict (Figure 5), an iconic programming language coded in
Pascal. The authors completely reject text, claiming that icons alone
should be used in progamming, and the user should never have to touch a
keyboard. But this argument is not substantiated. Pict allows the user to
graphical step through a program’s execution. Pict allows a program to
run, even if the code has not been completed. When the program reaches
the end of available code, execution stops and a message is displayed. This
may be very important for testing and design. Segments of code may be
tested before continuing coding, without the use of stubs and dummy
variables and functions.

• [3]: Presents Tinkertoy (Figure 6), a graphical interface for Lisp. Mentions
the use of the graphical interface to ensure that programs are syntactically
correct, as the interface will not allow icons to be placed in configurations
that are not syntactically legal. Tinkertoy represents code using icons
labelled with text. The user has instance access to icons that are not

18

already displayed by typing the icon’s name into a text box. The graphical
icon is then created, with which the user can interact.

• [8]: Presents ThinkPad (Figure 7), a graphical interface for Prolog. Think
Pad was coded in C. Structures are represented as graphical shapes with
textual labels. Details, such as constraints (“==”, “<”, “>” “<=”, “>=”,
“!=”), are represented with text. ThinkPad allows the user to choose a
shape - a rectangle or circle - for each structure they wish to represent.
This implies a lack uniformity and structure in the graphical notation.

• [7]: Presents GARDEN (Figure 8), a graphical programming language.
The authors of GARDEN claim that with GARDEN, the graphical repre-
sentation is the code. This would imply that execution is determined by
evaluation of the pixels of the image, which does not appear to be the case.
The view of GARDEN’s authors is that good graphical representation of
code requires different views of the code to suit different purposes. For
example, sometimes a graph or flowchart may be appropriate, whereas at
other times a diagram would better represent the structures and processes.

3.5.2 Further promising literature

General

• “Parsing Visual Languages with Picture Layout Grammars”: Defining the
syntax of visual languages.

• “Usability Analysis of Visual Programming Environments: A ’Cognitive
Dimensions’ Framework”: Evaluation of visual languages.

• “Translucent Patches”: Use of transparency as a dimension of communi-
cation. Form of dynamic representation e.g. a blue variable on a yellow
function becomes a green variable.

• “The Hyperbolic Browser: A Focus + Context Technique for Visualizing
Large Hierarchies”: Use of focus points to expand detail in areas of interest,
and reduce detail in areas not under study.

• “Learning to Read Graphics: Some evidence that “seeing” an Information
Display is an Acquired Skill”: Journal article on which [5] is based.

• “Visual Programming Languages: A Perspective and Dimensional Analy-
sis”: Classifications of visual programming languages.

Graphical programming systems [4]

• Pecan and Magpie: Systems which provide graphical extensions to pascal.

• Mira-3D: Use of three dimensional graphics in programming.

19

• Programming by Rehearsal: Uses the analogy of a theatre to facilitate
programming, as an “operational metaphor”. Programs are presented as
productions. Different parts of the program are referred to as performers,
cues, stages, wings and troupes. The use of analogies in this way is one of
the aspects to be looked at in the project.

3.6 Summary
Abstraction is a powerful but under-used concept in the realm of textual pro-
gramming. Further inclusion of non-textual graphics in programming could be
used to harness this concept. Dimension is another important concept. An
understanding and investigation of dimension and our perceptions is important
before attempting to map visual and auditory cues to information.

The project will consist of different portions addressing different issues. An
investigation of encoding will be required to devise means for new notations to
be read and written, in sufficiently precise and unambiguous notation to suit
programming. The role of the interface will be to allow control of code and assist
with navigation. The presentation of code refers to factors such as mapping the
problem at hand to the code written to solve it, and use of abstaction and
representations to focus on relevant parts of the problem.

Text is a powerful notation, but is better suited to programming with the
aid of non-textual graphics and decoration. Precisely when text or different
graphical representations surpass one another as means of representation will
need to be established before deciding which representation to use when.

A number of articles have been written, raising a number of interesting points
and outlining the design of a number of interesting systems. But the basis of
the roles of text and graphics is understudied.

4 Design

4.1 Mapping to the problem domain
The visual cues available will need to be enumerated, and effective mappings of
cues to information will need to be devised. A preliminary list of dimensions and
associations are given in Appendix B on page 30. A number of considerations
should be taken into account:

Coherence The concepts of coherence and consistency should be important
factors in improving readability. A number of options exist, which should be
evaluated. For example, all data could be mapped to a colour, and different
data structures such as primitives, records and objects then distinguished by
shape. Or the mapping could be reversed, distinguishing by shape, then colour.
Different types, such as integers, characters and booleans, could then be dis-
tinguished by further detail or decoration, such as numbers or colours of dots.
Alternatively all data structures could be given a common shape and colour,

20

and then further distinguished by decoration. It should be investigated whether
there are any significant differences in the user responses to the various design
options, to justify the final approach chosen.

Complexity The limits and optima of user perception, memory and under-
standing should be established if a system is to be designed on more substantial
grounds than experience or sheer luck. It will be necessary to determine how
much to display and how complex the content should be, ultimately how busy
the screen may be without user becoming overwhelmed. The representations
used will then need to convey the required information while limiting detail to
within these bounds.

These bounds may change dramatically with exposure and experience. As it
is unlikely that any system will be complete and in use long enough to measure
response of experienced users, responses to related systems could instead be
measured. Example are strategy games and modelling languages. Both consist
of a number of symbols which interact in defined ways. Establishing the on
screen complexity and the ability of experienced users to differentiate and iden-
tify these symbols and their roles may give a sufficient idea of the constraints
the system will face.

Some of the complexity considerations include surface structure of shapes,
complexity of shape combinations, detail of decoration and colour complexity.

4.2 Considerations of project components
A number of questions regarding the different project components should be
investigated to guide and justify design decisions.

Encoding

• Form combinations from a set of ’letters’, or use a new character for every
’word’?

• How will start and end points be defined, if the encoding is not serial (such
as two or three dimensional)? Structured programming prescribes the use
of control structures with one entry and one exit point [6], precluding the
use of goto statements. To take advantage of extra spatial dimensions,
is there a way to define multiple entry and exit points while maintaining
readability and structure? Is there any advantage to multiple entry and
exit points?

• What definitions and contraints are required to ensure good structure
and readability? Should the goal be more detail, at the cost of adding
complexity, or greater simplicity, at the cost of control and precision?

• Should the project focus on graphical extensions of existing languages, or
investigation of purely visual programming languages?

21

• An argument raised by [5] is that the power of visual programming lan-
guages lies in the range of visual cues made available. Yet new freedoms,
such as removal of textual layout restrictions, are often side effects and not
part of the language. The effective use or abuse of visual cues is then left
entirely to the programmer. Should layout be part only of the interface,
such as found in Java, C++ and Pascal, or part of the encoding, such as
in Python? Should rapid but messy debugging, and expressive freedom,
be traded for enforced good structure and readability?

Interface

• Structured programming.

• Abstraction of implementation specifics.

• Debugging.

• No syntax errors (Correctness).

• Navigation (layers of abstraction).

• Combine text and graphics.

• Control.

• Features: If-defs, commenting out variables, looking glass.

Presentation

• How should data structures and algorithms be presented? When should
text, diagrams or graphs be used, and which diagrams or graphs? Should
representations be restricted purely to one existing system, such as UML,
or should different representations be used where appropriate?

• A comment made by [7] is that computer languages are made up of sub-
languages, such as expressions and control structures. If languages are
to be viewed in this way, how should each component of a language be
represented under different contexts?

• An important decision is the mapping of visual cues to information. What
associations already exist? For mappings provided as decoration by the
interface, should the user have choices, such as colour and font options
offered by many IDEs, or should the mappings be set?

• Static representation refers to a series of steps, which may be viewed
individually in a sequence (Figure 1a). If the representation of the process
changes after application of each step (Figure 1b), this will be referred to
as dynamic representation. What are the benefits and disadvantages of
representing processes statically or dynamically?

22

• Levels of abstraction.

• Analogies.

• Use of textual or graphical summaries (eg table of contents).

4.3 Pre-design tests
• Memory

– How many shapes before “swamping” effect?
– Strategy games - number and complexity of units.

• Perception

– How complex shapes before difficult to distinguish?
– Granularity of colours before difficult to distinguish.

• Interpretation

– Limits of learning.
– Is an overview helpful?
– Is the devised graphical overview more suitable than the devised tex-

tual overview?

• Appeal

– Complementary colours.

• Other

– Types of languages and possible contributions/effectiveness by graph-
ics.

4.4 Rerepresentation of existing languages
4.4.1 Goals

• Reduce time taken to code.

• Give control over code, to enforce good programming practices.

• Improve code navigation.

• Improve code structure.

• Aid debugging.

• Abstract implementation details.

• Make code easier to understand.

23

4.4.2 Evaluation of system

• Reduce time taken to code: Compare times taken to produce equivalent
code using the graphical system, and using text with an appropriate IDE.
Considerations:

– Expertise using graphical system.

– Expertise using text.

– Expertise using IDE.

– Ordering of tests.

– Requirements, such as number of replicates, required for statistical
analysis.

• Give control over code, to enforce good programming practices: Calculate
number of syntax errors made during coding using text with an appro-
priate IDE (syntax errors should be impossible with graphical interface).
Calculate the time spent correcting syntax errors. Calculate what portion
of time is saved by omition of syntax errors, and whether this is statisti-
cally significant. Test may not be feasible. Considerations:

– Expertise using text.

– Expertise using IDE.

– Requirements, such as number of replicates, required for statistical
analysis.

– Means to count errors and time correction of errors. Manual counting
and timing may not be accurate enough.

• Improve code navigation: Compare times taken to navigate about a pro-
gram to insert missing code, or correct a set of errors. Considerations:

– Should be based on problems encountered in real programs.

– Expertise using graphical system.

– Expertise using text.

– Expertise using IDE.

– Requirements, such as number of replicates, required for statistical
analysis.

• Improve code structure: Subjective evaluation of structure of textual code
output from a textual program and from the graphical system. Or use
a contrived example where good structure is required to make the code
function. Considerations:

– Subjective preferences.

– Programming experience.

24

– Exposure to graphical modelling tools.

– Analysis of subjective data.

• Aid debugging:

• Abstract implementation details:

• Make code easier to understand:

4.4.3 Rough ideas for system

• Reduce time taken to code.

– Expose methods of wrapped classes at the click of a mouse.

– When a piece of code is commented out, comment out all dependent
parts of code.

• Give control over code, to enforce good programming practices.

– Only allow syntactically correct expressions.

– Give the ability to enable or disable icons, representing statements
of programming language.

• Improve code navigation.

– Use navigation techniques designed for rapid navigation around strat-
egy games.

– This includes using a workspace that is larger than the screen.

– To navigate about the workspace, the user can pan, zoom, or use a
minimap (a simplified overview of the entire workspace).

– There may also be labelled arrows on request, to give directions to
offscreen code.

– There may also be control groups of code assigned to hotkeys. The
user may cycle through blocks of code within a control group.

– Allow user to follow associations between parts of code.

• Improve code structure.

– Allow the programmer to group logically related data structures and
algorithms. Near and far could be mapped to degree of relation.
This could use thresholds for near and far or use cladistics to create
subgroups. But a simpler option would be to create borders and map
within and without to related and unrelated.

• Aid debugging.

25

– Possibly place checkpoints in code to allow logging of program exe-
cution. Use logged information to allow graphical stepping through
code that has been executed. Stepping through code in the process
of execution and use of break points may integration with a debug-
ger. This would most probably be a major undertaking, requiring
advanced knowledge of the inner workings of the debugger. It would
be better left as an extension to the project.

• Abstract implementation details.

– Represent common features of programming languages using the same
icons.

– Allow the user to restrict icons to a subset common to specified lan-
guages. This will allow the same graphical blueprint to generate code
for multiple languages.

• Make code easier to understand.

– Allow user to expand or abstract regions of code.

– Use focus points to show the details of regions of code near the point,
while gradually abstracting code further away.

– Indicate associations between parts of code.

– Use uniform and consistent visual cues (colour, shape, patterns) to
indicate logical relationships.

4.4.4 Diagrams

4.5 New representations
4.5.1 Goals

• Devise forms of programming that give a closer mapping of problem and
solution.

• Use appeal value of graphics.

4.5.2 Evaluation of system

• Mapping

– Program walkthrough [1].

• Appeal

– Opinion of users.

26

4.5.3 Rough ideas for systems

• Static and Dynamic

• Strategy game (beans) - overview only

• Threads (workers)

4.5.4 Diagrams

5 Implementation

5.1 Coding
5.1.1 Tools

• Pascal

• Lazarus

• FPC

5.1.2 Advantages

• Open source

• GUI development

• Private codebase

• Cross platform

• Personal Experience

5.1.3 Disadvantages

• Codebase of C and C++ very large.

• Java and C# considered “safer”.

6 Summary
• Graphics are not inherently better and the design of the system will decide

whether the use of graphics improves or hinders code production and read-
ability. Graphics may provide many abstractions to aid programming, but
many of these abstractions may also be implemented in text. The bene-
fits of augmenting texts with graphics will need to be tested to determine
whether graphical programming is a feasible avenue for further study, how
it may benefit the field of computer science, and when, where, how and in
what way its use is appropriate and beneficial.

27

References
[1] Brigham Bell, John Rieman, and Clayton Lewis. Usability testing of a graph-

ical programming system: things we missed in a programming walkthrough.
In CHI ’91: Proceedings of the SIGCHI conference on Human factors in
computing systems, pages 7–12, New York, NY, USA, 1991. ACM.

[2] Morgan Björkander. Graphical programming using uml and sdl. Computer,
33(12):30–35, 2000.

[3] M. Edel. The tinkertoy graphical programming environment. IEEE Trans-
actions on Software Engineering, 14(8):1110–1115, 1988.

[4] E.P. Glinert and S.L. Tanimoto. Pict: An interactive graphical programming
environment. Computer, 17(11):7–25, 1984.

[5] Marian Petre. Why looking isn’t always seeing: readership skills and graph-
ical programming. Communications of the ACM, 38(6):33–44, 1995.

[6] Edwin D. Reilly and Francis D. Federighi. Pascalgorithms. Houghton Mifflin
Company, Boston, 1989.

[7] Steven P. Reiss. An object-oriented framework for graphical programming
(summary paper). In Proceedings of the 1986 SIGPLAN workshop on Object-
oriented programming, pages 49–57, New York, NY, USA, 1986. ACM.

[8] R.V. Rubin, E.J. Colin, and S.P. Reiss. Think pad: A graphical system for
programming by demonstration. IEEE Software, 2(2):73–79, 1985.

28

Appendix A: Diagrams

(a) An example of a static representa-
tion. Each step in the process is pre-
sented individually. The process is rep-
resented as a sequence of steps, execut-
ing from top to bottom.

(b) The same process represented
in (1a), but represented dynamically.
Rather than showing each step, the rep-
resentation has changed to indicate the
state of the process, allowing the reader
to infer which instructions have been
given until this point.

Figure 1: An example of static (1a) and dynamic (1b) representations of a
non-existant graphical programming language.

29

Appendix B: Preliminary list of
dimensions
Examples of dimensions

• Visual

– Spatial: width, height, depth, length, volume (size).

– Positional: coordinates, rotation.

– Structural: shape, detail, outline, completeness.

– Surface: colour, brightness, transparency, contrast, gradient, blur,
reflectivity, shade.

– Other: number, density, arrangement, completeness.

• Tactile

– Temperature, texture.

• Audio

– Volume, pitch, frequency, origin.

• Patterns of any of the above. If the above are viewed characters, then
patterns may be viewed as words.

– Checkerboard, stripes, music.

Dimensions may have values or thresholds. For example, colour may be blue,
size big, temperature cold, texture rough or volume loud.

Examples of existing associations

Positional coordinates

• Down or right indicates more progress and left or up indicates less, in the
case of sliders, scrollbars and progress bars.

• Relative position may indicate precedence, where items above have higher
priority than items below.

• Items grouped together are interpreted as associated.

Rotation

• Rotation may be used to represent the viewers virtual orientation, such
as in a flight simulator.

30

Figure 2: Use of graphical decoration by Netbeans version 6.5. (i) Fontstyles
and colours used to emphasise and distinguish keywords, identifiers and sym-
bols. “String” underlined to indicate a hyperlink when Ctrl held down and mouse
moved over. Rectangle drawn around comments to indicate folded code. (ii)
Matching braces at mouse position highlighted with yellow. Number five sur-
rounded by a red rectangle to emphasise newly typed parameter. “doubleValue”
in italics to emphasise edited function. (iii) “unusedResult” underlined by a grey
wavy line (green when line not highlighted) to indicate that it is never used and
warn that the line is superfluous. (iv) Red octogon containing an exclamation
mark to draw attention to synax error. “abcd” underlined by a red wavy line
to indicate that it is syntactically incorrect. (vi) Currently selected line high-
lighted. (v) Squares containing “+” or “-” to control and indicate whether code
is folded. (vi) Floating text box to give meta-information about code.

Figure 3: Use of graphical decoration used by Visual Studio 2008 Express
Edition. (i) Margin colours used to represent code added in the current session.
Green indicates that it has been saved, orange that it has not. (ii) The square
under the ’S’ of “SquareRoot” indicates extra options the IDE may perform on
the SquareRoot function. In this case the dialog expands when clicked on to
allow the IDE to auto-generate a stub function.

31

(a) Visual editing of a Python script in
Blender (version 2.48).

(b) Visual editing of an XML schema in Altova
XMLSpy (2009 Enterprise Edition).

(c) Visual editing using the Visual Library of the Java Netbeans IDE version 6.5 (from
http://graph.netbeans.org/screenshots/mobility60.png).

Figure 4: Examples of visual editing implemented in existing software packages.
To gain an understanding of the possible roles text may play in programming, it
is important to investigate where, how and why graphical editing is used. The
above examples include visual editing of a Python shader (4a), an XMLSchema
(4b) and a Java program (4c).

32

(a)

(b)

Figure 5: Blue > Green: Big blue square, small green square. In a triangle
representing the conventional if statement. Swap red, orange, green: arrows.
Green for true, red for false. [...] Power in use of symbolism. But symbols are
not part of language. Programmer could give any image as icon, or no image
at all & still syntactically correct. Some concepts, esp. abstract, may not be
possible to draw as simple icon (eg. fib written on icon). Require artist skill
- programming = mathematical, cannot expect all programmers to be good at
art (quite the opposite). Time to draw. Given icons easy to read once know
what they represent. But may be difficult to intepret. Ambiguity. Perhaps
easier with experience. Use conventions (triangle, arrows) = hints at formal
language, but not used. Too much unconstrained freedom. Finding function
may take time (no way to search as no names, need search for similar pictures
algorithm, + take time to draw search template). Will difficult to distinguish if
many colours (variables) involved.

33

Figure 6: Tinkertoy[3] is a visual front-end for the Lisp programming language.
Icons, representing data and algorithms, are combined together to form pro-
grams. Correct syntax is ensured as icons will only combine if the combination
is syntactically correct. As Lisp is an interpreted language, the functions are
evaluated immediately. The output is represented as an icon with which the
user may in turn interact and produce further structures. Tinkertoy gives in-
stant access to icons not already displayed on the screen by allowing the user
to type the name of the atom or function in a text bar.

34

Colour

• Blue and cold, and red and hot, are associated.

• Red and danger are associated.

• Yellow and black are used as a warning colours.

• Blue and green are used for information.

Transparency

• Transparency may represent prescence, contribution or weight.

• A faded music control would be expected to make less noise.

• Transparency may indicate an inactive or infrequently used control.

• A dragged window or a control blueprint that has not yet been placed is
often represented as transparent.

Shade

• Light is associated with good, dark is associated with bad or evil.

• Grey is used to represent disabled.

Size

• Large volume is associated with high value.

Blur

• Blue is associated with speed. A fast movement may be represented stat-
ically by blurring.

Volume

• A high volume is associated with a high value.

• A loud noise may be interpreted nearby, a muffled or soft noise as distant.

Pitch

• A high pitch is associated with warning, such as an alarm bell.

Frequency

• A high frequency is associated with nearby, such as a metal detector.

35

Temperature

• Hot and warm are associated with nearby, cold with far away.

Texture

• Rough or unpolished are associated with unfinished.

36

Figure 7: ThinkPad[8] is a visual front-end for the Prolog programming lan-
guage. The example in the figure is of a tree node containing an integer as data.
ThinkPad allows the user to choose either a rectangle or a circle to represent a
structure. This may lead to confusion if there are style inconsistencies between
programs or programmers.

37

Figure 8: GARDEN[7] is a visual programming language. GARDEN provides
multiple views of a program, such as petri nets, finite state automata and Nassi-
Schneider diagrams. The aim of GARDEN is to provide a language where
the diagram is the code, and does not rely on an underlying textual language.
This approach intends to avoid the serial one dimensional restrictions of textual
languages.

38

